Selected Publications

Thumbnail of figure from publication
By N. Brimhall, N. Heilmann, M. Ware, and J. Peatross
Abstract: We demonstrate a technique for determining optical constants of materials in the extreme UV from the ratio of p-polarized to s-polarized reflectance. The measurements are based on laser-generated high-order harmonics, which have easily rotatable linear polarization but that are prone to brightness fluctuations and systematic drifts during measurement. Rather than measure the absolute reflectance, we extract the optical constants of a material from the ratio of p-polarized to s-polarized reflectance at multiple incident angles. This has the advantage of dividing out long-term fluctuations and possible systematic errors. We show that the reflectance ratio is as sensitive as the absolute reflectance to material optical properties. (C) 2009 Optical Society of America
Thumbnail of figure from publication
By Nicole Brimhall, Matthew Turner, Nicholas Herrick, David D. Allred, R. Steven Turley, Michael Ware, and Justin Peatross
Abstract: We describe an extreme-ultraviolet (EUV) polarimeter that employs laser-generated high-order harmonics as the light source. The polarimeter is designed to characterize materials and thin films for use with EUV light. Laser high harmonics are highly directional with easily rotatable linear polarization, not typically available with other EUV sources. The harmonics have good wavelength coverage, potentially spanning the entire EUV from a few to a hundred nanometers. Our instrument is configured to measure reflectances from 14 to 30 nm and has similar to 180 spectral resolution (lambda/Delta lambda). The reflection from a sample surface can be measured over a continuous range of incident angles (5 degrees-75 degrees). A secondary 14 cm gas cell attenuates the harmonics in a controlled way to keep signals within the linear dynamic range of the detector, comprised of a microchannel plate coupled to a phosphorous screen and charge coupled device camera. The harmonics are produced using similar to 10 mJ, similar to 35 fs, and similar to 800 nm laser pulses with a repetition rate of 10 Hz. Per-shot energy monitoring of the laser discriminates against fluctuations. The polarimeter reflectance data agree well with data obtained at the Advanced Light Source Synchrotron (Beamline 6.3.2).
Thumbnail of figure from publication
By Matthew Turner, Nicole Brimhall, Michael Ware, and Justin Peatross
Abstract: We numerically simulate the propagation of high-intensity laser pulses in helium to investigate the role of nonlinear effects in gas-cell high-harmonics experiments. An aperture located before the focusing lens is also included in the simulation. Numerical results for the radial fluence profile as a function of axial position, as well as for the spectral shift and ionization levels, agree with experimental observations. The simulations confirm that a significant Kerr effect is not required to generate the observed double focus in the fluence. The beam simulation also permits an investigation of high-harmonic phase matching. Most of the harmonic energy is seen to come from the forward portion of the laser pulse, whereas the latter portion gives rise to the incidental double laser focusing. Good phase matching for the harmonics arises in large measure from a balance between the linear phase delay of the neutral atoms and the Gouy shift, which is elongated and nearly linearized when the aperture is partially closed on the beam. (c) 2008 Optical Society of America.