Selected Publications

Thumbnail of figure from publication
By S. Glasgow, M. Meilstrup, J. Peatross, and M. Ware
Abstract: We discuss the recoverable and irrecoverable energy densities associated with a pulse at a point in the propagation medium and derive easily computed expressions to calculate these quantities. Specific types of fields are required to retrieve the recoverable portion of the energy density from the point in the medium, and we discuss the properties that these fields must have. Several examples are given to illustrate these concepts.
Thumbnail of figure from publication
By John C. Painter, Mark Adams, Nicole Brimhall, Eric Christensen, Gavin Giraud, Nathan Powers, Matthew Turner, Michael Ware, and Justin Peatross
Abstract: We investigate the spatial evolution of a laser pulse used to generate high-order harmonies (orders ranging from 45 to 91) in a semi-infinite helium-filled gas cell. The 5 mJ, 30 fs laser pulses experience elongated focusing with two distinct waists when focused with f/125 optics in 80 Torr of helium. Extended phase matching for the generation of harmonics occurs in the region between the double foci of the laser, where the laser beam changes from diverging to converging. (c) 2006 Optical Society of America.
Thumbnail of figure from publication
By Michael Ware (et al.)
Abstract: We discuss a practical implementation of a photon-counting detector calibration using correlated photon pairs produced by parametric down-conversion. In this calibration scheme, the detection of a first photon triggers the measurement sequence aimed at detection of a second photon by a detector under test (DUT). We also describe measurements of radiant power with a photon-counting detector, which is important for implementation of a conventional calibration technique based on detector substitution. In the experiment, we obtain a time-delay histogram of DUT detection events consisting of a correlated signal and a background. We present a method for separating the correlated signal from the background signal that appropriately handles complex properties of typical avalanche photodiode (APD) detectors. Also discussed are measurements of relevant APD properties, including count-rate-dependent afterpulsing, delayed (by up to 10 ns) electronic detections and deadtime effects. We show that understanding of these is  essential to perform an accurate calibration.