Selected Publications

Thumbnail of figure from publication
By J. Peatross, S. A. Glasgow, and M. Ware
Abstract:

The arrival time of a light pulse at a point in space is defined using a time expectation integral over the Poynting vector. The delay between pulse arrival times at two distinct points is shown to consist of reshaping via absorption or amplification. The result provides a context wherein group velocity is always meaningful even for broad band pulses and when the group velocity is superluminal or negative. The result imposes luminality on sharply defined pulses.

Thumbnail of figure from publication
By Mahonri Romero, Luke Robins, Aria Stevens, Yance Sun, Michael Ware, and Justin Peatross (et al.)
Abstract:

The individual polarization components of nonlinear Thomson scattering arise from the separate dimensions of electron figure-8 motion caused by a linearly polarized laser field. We present the first measurements of nonlinear Thomson scattering in both emission hemispheres. In the electron average rest frame, the shape of the electron figure-8 path is symmetric about the laser polarization dimension. However, the periodic electron velocity is intrinsically asymmetric. The full scattering emission pattern reveals this asymmetry and the direction that electrons move around the figure-8 path.

Thumbnail of figure from publication
By D. Hodge, T. Buckway, R. Camacho, E. Christie, A.M. Hardy, M. Ware, and R.L. Sandberg (et al.)
Abstract:

We present measurements of X-ray Parametric Down Conversion at the Advanced Photon Source synchrotron facility. Using an incoming pump beam at 22 keV, we observe the simultaneous, elastic emission of down-converted photon pairs generated in a diamond crystal. The pairs are detected using high count rate silicon drift detectors with low noise. Production by down-conversion is confirmed by measuring time–energy correlations in the detector signal, where photon pairs within an energy window ranging from 10 to 12 keV are only observed at short time differences. By systematically varying the crystal misalignment and detector positions, we obtain results that are consistent with the constant total of the down-converted signal. Our maximum rate of observed pairs was 130/h, corresponding to a conversion efficiency for the down-conversion process of 5.3±0.5×10−13.