Chapter 10: Waves

Did you read chapter 10 before coming to class?
A. Yes
B. No

The Test
- Average score: 25/30
http://ps100.byu.edu/Syllabus.aspx

Wave concepts
- Waves are a "disturbance" that travels (usually through a material).
- They carry energy away from a source.
- The disturbance and associated energy move along, the material does not.

Types of Waves: Surface Waves
- Come from compressing atoms (or molecules) close together and then pulling them apart.
- The oscillations are parallel/antiparallel to the direction of travel.

Types of Waves: Compression Waves
- Compression waves can travel through solids and fluids.

Multiple Choice Scores

Frequency

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>29</td>
<td>15</td>
</tr>
<tr>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>
Types of Waves: Transverse waves
- The oscillations in a transverse wave are perpendicular to the direction of travel.
 - Mechanical transverse waves (shear waves) require rigid bonds, so they only travel through solids.

Wave Properties: Wavelength
- Wavelength is the distance between two similar parts of the wave.

Wave Properties: Amplitude
- Amplitude is the amount of displacement from the rest position.
 - Associated with the energy of the wave:
 - loudness (sound)
 - brightness (light)

Wave Properties: Frequency
- Frequency is the number of wave crests which pass a point per second.
 - sound: pitch, 20 to 20,000 Hz
 - light: color, 10^{15} Hz
 - earthquake: 10 to 1,000 Hz
 - radio: kHz (AM) to MHz (FM)

Wave Properties: Speed
- Speed = frequency \times wavelength
 - Speed usually depends almost exclusively on the medium.
 - However, frequency/wavelength can play an extremely minor role in special cases.
 - This is how we get rainbows.

You hear the thunder five seconds after seeing the lightning.
How far away is the lightning?
If you double the frequency of a wave, the speed will

- a) Double
- b) Be cut in half
- c) Remain essentially unchanged

Speed = frequency × wavelength.

Sound

- A compression wave in a fluid (air, water, etc).
- Long wavelength, low frequency ➔ low pitch
- Short wavelength, high frequency ➔ high pitch

Visible Light

- A transverse wave (but what is waving?)
- Long wavelength, low frequency ➔ red light
- Short wavelength, high frequency ➔ blue light
- Speed is the same for all colors in vacuum/air. Small dependence on color in dense material like water/glass

Wave Behavior

- All waves will
 - Reflect
 - Refract
 - Diffract
 - Interfere

Reflection

Refraction

The bending of a wave as it enters a medium with different properties so that the wave speed changes.
Diffraction

- The wave fans out when it encounters an obstacle or opening.
- The amount of diffraction depends on the relationship between wavelength and size of opening:
 - Most when wavelength is similar to opening
 - Small when wavelength is much smaller than opening.

Interference

- When two or more waves meet:
 - Constructive interference: two crests add together
 - Destructive interference: crest and trough cancel

Standing waves

- Points of the medium that are permanently at rest are called Nodes
- Points of the medium that have maximum oscillation are called Anti-Nodes
- Only certain frequencies produce standing waves in a given system. These are called resonance frequencies.
- The energy of a wave is associated with its frequency.
- We can create one-dimensional standing waves using a rope:

Higher Dimensions

- Standing waves are possible in two dimensions as well
The Doppler Effect

- When the source and/or the observer are in motion relative to one another, the observed frequency can change.
- If the source and observer are moving towards each other, frequency increases.
- If they are moving apart, frequency decreases.

Bonus material: Shock waves

- If a source is moving faster than the speed of the wave, shock waves form.